TOPOLOGICAL PROPERTIES OF PARANORMAL OPERATORS ON HILBERT SPACE

BY

GLENN R. LUECKE

ABSTRACT. Let B(H) be the set of all bounded endomorphisms (operators) on the complex Hilbert space H. $T \in B(H)$ is paranormal if $\|(T-zI)^{-1}\| = 1/d(z,\sigma(T))$ for all $z \notin \sigma(T)$ where $d(z,\sigma(T))$ is the distance from z to $\sigma(T)$, the spectrum of T. If $\mathcal P$ is the set of all paranormal operators on H, then $\mathcal P$ contains the normal operators, $\mathcal H$, and the hyponormal operators; and $\mathcal P$ is contained in $\mathcal L$, the set of all $T \in B(H)$ such that the convex hull of $\sigma(T)$ equals the closure of the numerical range of T. Thus, $\mathcal H \subseteq \mathcal P \subseteq \mathcal L \subseteq B(H)$. Give B(H) the norm topology. The main results in this paper are (1) $\mathcal H$, $\mathcal H$, and $\mathcal L$ are nowhere dense subsets of B(H) when dim $H \ge 2$, (2) $\mathcal H$, $\mathcal H$, and $\mathcal L$ are arcwise connected and closed, and (3) $\mathcal H$ is a nowhere dense subset of $\mathcal P$ when dim $H = \infty$.

Paranormal operators have received considerable attention in the current literature ([16], [17], [19], [20], [21], [23], [24], [25]). However, only the various spectral properties of paranormal operators have been discussed. In this paper, the topological properties of the set of all paranormal operators \mathcal{P} on a Hilbert space \mathcal{H} are investigated.

We begin by giving the notation to be used and by defining some of the more specialized terminology. The point spectrum and approximate point spectrum of an operator T are denoted by $\sigma_p(T)$ and $\sigma_n(T)$, respectively. $z \in \sigma_p(T)$ is a normal eigenvalue if $\{x \in H : (T-zI)x = 0\} = \{x \in H : (T-zI)^*x = 0\}$ where I denotes the identity operator on H. $z \in \sigma_n(T)$ is a normal approximate eigenvalue of T when $(1) \|x_n\| = 1$ and $\|(T-zI)x_n\| \to 0$ as $n \to \infty$ imply $\|(T-zI)^*x_n\| \to 0$ as $n \to \infty$, and $(2) \|y_n\| = 1$ and $\|(T-zI)^*y_n\| \to 0$ as $n \to \infty$ imply $\|(T-zI)y_n\| \to 0$ as $n \to \infty$. If S is a set of complex numbers, then ∂S denotes the boundary of S and CO(S) denotes the convex hull of S. Let $W(T) = \operatorname{closure}\{(Tx, x) : x \in H, \|x\| = 1\}$ denote the closure of the numerical range of T. Let $R(T, z) = (T-zI)^{-1}$ for each $z \in \rho(T)$, the resolvent set of T. The spectral radius of T is denoted by $R_{SP}(T)$. $T \in B(H)$ is hyponormal if $T^*T - TT^* \geq 0$.

I. Elementary properties of paranormal operators. Stampfli [19] has shown that every hyponormal operator is paranormal. Therefore, since every normal

Presented to the Society, August 28, 1970; received by the editors April 16, 1970. AMS (MOS) subject classifications (1969). Primary 4740.

Key words and phrases. Hilbert space, resolvent, normal operator, convexoid operators, properties and topological properties of G_1 operators.

operator is hyponormal, $\mathfrak{N} \subseteq \mathcal{P}$. G. Orland [13] proved that $T \in \mathfrak{L}$ if and only if $||R(T, z)|| < 1/d(z, \cos \sigma(T))$ for all $z \notin \cos \sigma(T)$. From this it follows immediately that if T is a paranormal operator, then co $\sigma(T) = W(T)$, i.e. $\mathcal{G} \subset \mathcal{G}$.

Theorem 1.1. If T is a paranormal operator and if α and β are complex numbers, then $\alpha T + \beta I$ and T^* are paranormal.

The proof is a simple computation that depends on $\sigma(\alpha T + \beta I) = \alpha \sigma(T) + \beta$ and $\sigma(T^*) = \sigma(T)^*$.

The following theorem is very useful in constructing examples.

Theorem 1.2. If A is any operator on H, then there exists a Hilbert space K and a normal operator N on K such that $T = A \oplus N \in B(H \oplus K)$ is paranormal.

Proof. Since W(A) is a compact set of complex numbers, there exists a Hilbert space K and a normal operator N on K such that $\sigma(N) = W(A)$ [3, p. 581]. Let $T = A \oplus N$. Then $\sigma(T) = \sigma(N) = W(A)$. For $z \notin \sigma(T) = W(A)$, it is well known that $||R(A, z)|| \le 1/d(z, W(A)) = 1/d(z, \sigma(T))$. Since N is normal and $z \in \rho(N)$, $||R(N, z)|| = 1/d(z, \sigma(T))$. Therefore

$$||R(T, z)|| = \text{Max}\{||R(A, z)||, ||R(N, z)||\} = 1/d(z, \sigma(T)).$$

Thus T is paranormal.

As we shall see, the class of all hyponormal operators on H is distinct, in general, from the class ${\mathcal P}$ of paranormal operators. We know [19] that if T is hyponormal, then $||T|| = R_{sp}(T)$ and if T is also invertible, then T^{-1} is hyponormal. These properties do not generalize to paranormal operators.

Theorem 1.3. There exists an invertible paranormal operator T such that

- 1. T is not hyponormal,
- 2. T² is not paranormal,
- 3. $||T|| > R_{sp}(T)$, and 4. T^{-1} is not paranormal.

Proof. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Let N be a normal operator such that $\sigma(N) = W(A)$, and let $T = A \oplus N$. Then by Theorem 1.2, T is paranormal. We know from [19] that a hyponormal operator is hyponormal on invariant subspaces. Therefore, since A is not hyponormal, T is not hyponormal. By [1], W(A) is the closed disc of radius 1/2 about z = 1, and $W(A^2)$ is the closed disc of radius 1 about z = 1. Therefore

$$0 \in W(A^2) \subseteq W(T^2)$$
 and $0 \notin co(\sigma(T)^2) = co \sigma(T^2)$.

Therefore, co $\sigma(T^2) \neq W(T^2)$ and so T^2 is not paranormal. Let $x = \begin{bmatrix} \sqrt{1/2} \\ \sqrt{1/2} \end{bmatrix}$, then ||x|| = 1 and $||Ax|| = \sqrt{10/2}$. Then

$$||T|| \ge ||Ax|| = \sqrt{10}/2 > 3/2 = R_{SD}(T).$$

Therefore $||T|| > R_{en}(T)$. If T^{-1} were paranormal, then

$$||T|| = ||R(T^{-1}, 0)|| = 1/d(0, \sigma(T^{-1})) = R_{co}(T).$$

Contradiction. Hence T^{-1} is not paranormal.

II. Topological properties of \mathcal{P} . Recall that \mathcal{N} is the set of all normal operators on H, \mathcal{P} is the set of all paranormal operators on H, \mathcal{L} is the set of all $T \in B(H)$ such that co $\sigma(T) = W(T)$, and $\mathcal{N} \subseteq \mathcal{P} \subseteq \mathcal{L}$. It will always be assumed that B(H) has the uniform operator (norm) topology.

The following notation will be used in this section: If S is a compact subset of the complex numbers C and if $\epsilon > 0$, then let $S + (\epsilon) = \{z : d(z, S) < \epsilon\}$. If S and S_n , $n = 1, 2, 3, \cdots$, are compact sets in C, then the sequence $\{S_n\}$ approaches S, written $S_n \to S$, if for every $\epsilon > 0$ there exists a positive integer N such that, for $n \geq N$, $S_n \subseteq S + (\epsilon)$ and $S \subseteq S_n + (\epsilon)$.

In general $\sigma(T)$ is not a continuous function of T in B(H) (see [7, problem 85]), but $\sigma(T)$ is continuous if we restrict T to \mathcal{P} .

Theorem 2.1. If $\{T_n\}$ is a sequence of paranormal operators approaching the operator T in norm, then $\sigma(T_n) \to \sigma(T)$ as $n \to \infty$.

To prove this theorem we need the following lemma from [7, problem 86].

Lemma. If $T \in B(H)$ and $\epsilon > 0$, then there exists $\delta > 0$ such that if $S \in B(H)$ and $||T - S|| < \delta$, then $\sigma(S) \subset \sigma(T) + (\epsilon)$.

Proof of Theorem 2.1. We know by the lemma that for each $\epsilon > 0$ there exists a positive integer N such that, for $n \geq N$, $\sigma(T_n) \subseteq \sigma(T) + (\epsilon)$. Therefore, to show $\sigma(T_n) \to \sigma(T)$, it suffices to show that for each $\epsilon > 0$ there exists a positive integer N such that $\sigma(T) \subseteq \sigma(T_n) + (\epsilon)$ for all $n \geq N$. If this does not hold, then without loss of generality we may assume that there exists $\epsilon > 0$ and a sequence $\{z_n\} \subseteq \sigma(T)$ such that $d(z_n, \sigma(T_n)) \geq \epsilon$ for all n. Since $\sigma(T)$ is compact, we may assume $z_n \to z \in \sigma(T)$. If $|z_n - z| < \epsilon/2$, then

$$d(z,\,\sigma(T_n)) \geq d(z_n,\,\sigma(T_n)) - |z-z_n| \geq \epsilon - \epsilon/2 = \epsilon/2.$$

Hence

$$||R(T_n, z)|| = 1/d(z, \sigma(T_n)) \le 2/\epsilon.$$

Now choose m so that $\|(T_m - T)R(T_m, z)\| < 1$, then $I - (T_m - T)R(T_m, z)$ is invertible [7, problem 173]. Let

$$A = R(T_m, z)(I - (T_m - T)R(T_m, z))^{-1}.$$

Then A(T-zI)=(T-zI)A=I so that $z \in \rho(T)$. Contradiction.

Remark. Note that the full strength of the paranormality assumption was not

used in this proof, and that one can easily devise various larger classes of operators on which $\sigma(T)$ is continuous.

Theorem 2.2. \mathcal{P} is an arcwise connected, closed subset of B(H).

Proof. Since $T \in \mathcal{P}$ implies $aT \in \mathcal{P}$ for every complex number a, we see that the ray in B(H) through T is contained in \mathcal{P} . Therefore \mathcal{P} is arcwise connected.

Suppose $T_n \to T$, $\{T_n\}$ a sequence of operators in \mathcal{P} , and $T \in B(H)$. Let $z \in \rho(T)$. By the lemma to Theorem 2.1,

$$\limsup_{n\to\infty} \frac{1}{d(z, \ \sigma(T_n))} \leq \frac{1}{d(z, \ \sigma(T))}.$$

Therefore, since $\|R(T_n, z)\| = 1/d(z, \sigma(T_n))$ whenever $z \in \rho(T_n)$, there exists a positive integer N such that the sequence $\{\|R(T_n, z)\| : n \ge N\}$ is bounded. Then, since $R(T, z) - R(T_n, z) = R(T, z)(T - T_n)R(T_n, z), \|R(T_n, z)\| \rightarrow \|R(T, z)\|$ as $n \to \infty$. Consequently,

$$||R(T,z)|| = \lim_{n\to\infty} ||R(T_n,z)|| = \lim_{n\to\infty} \frac{1}{d(z,\sigma(T_n))} \le \frac{1}{d(z,\sigma(T))}.$$

Since the general $||R(T, z)|| \ge 1/d(z, \sigma(T))$, T is paranormal.

Theorem 2.3. \mathcal{L} is an arcwise connected, closed subset of B(H).

Proof. Since $T \in \mathbb{Q}$ implies that $aT \in \mathbb{Q}$ for every complex number a, \mathbb{Q} is arcwise connected.

Let $T_n \to T$, $\{T_n\} \subseteq \mathbb{Q}$ and $T \in B(H)$. Since $|(T_n x, x) - (Tx, x)| \le ||T_n - T||$ for ||x|| = 1, $W(T_n) \subseteq W(T) + (2||T - T_n||)$ and $W(T) \subseteq W(T_n) + (2||T - T_n||)$. Consequently, $W(T_n) \to W(T)$. Let $\epsilon > 0$, then by the lemma to Theorem 2.1 there exists a positive integer N such that $\sigma(T_n) \subseteq \sigma(T) + (\epsilon)$ for all $n \ge N$. Therefore, for $n \ge N$, co $\sigma(T_n) \subseteq \operatorname{co} \sigma(T) + (\epsilon)$ and hence

$$W(T) = \lim_{n \to \infty} W(T_n) = \lim_{n \to \infty} \operatorname{co} \sigma(T_n) \subseteq \operatorname{co} \sigma(T) + (\epsilon).$$

Since $\epsilon > 0$ is arbitrary, $W(T) \subseteq \operatorname{co} \sigma(T)$. Since in general $\operatorname{co} \sigma(T) \subseteq W(T)$, $T \in \mathcal{Q}$. Let \mathcal{N} be the set of all normal operators on H. Since $\|T_n - T\| \to 0$ implies $\|T_n^* - T^*\| \to 0$, \mathcal{N} is closed in the uniform operator topology on B(H). Since $T \in \mathcal{N}$ implies $aT \in \mathcal{N}$ for any complex a, \mathcal{N} is arcwise connected.

We already know that $\mathfrak{N} \subseteq \mathfrak{P} \subseteq \mathfrak{Q} \subseteq B(H)$. We will now investigate the relative topological properties of these four sets. Stampfli [20, Theorem C] has shown that $\mathfrak{N} = \mathfrak{P}$ when dim $H < \infty$. However, when dim $H = \infty$, then \mathfrak{N} is a very "thin" subset of \mathfrak{P} .

Theorem 2.4. \mathcal{H} is a nowhere dense subset of \mathcal{P} when dim $H = \infty$.

Proof. Since $\mathfrak N$ is closed, to show that $\mathfrak N$ is a nowhere dense subset of $\mathcal S$,

it suffices to show that \mathcal{N} has empty interior in \mathcal{P} . Let $T \in \mathcal{N}$ and let $\epsilon > 0$.

First suppose that T has an eigenvalue of infinite multiplicity. We may assume that the eigenvalue is zero. Let M be the eigenspace of zero. Then $\dim M = \infty$, M reduces T, and we can write $T = B \oplus Z$ where Z is the zero operator on M. Let $S = \begin{bmatrix} 0 & \epsilon \\ 0 & 0 \end{bmatrix} \oplus N$ be a nonnormal paranormal operator [see Theorem 1.2] on M with N a normal operator such that $\sigma(N) = W \begin{bmatrix} 0 & \epsilon \\ 0 & 0 \end{bmatrix}$. Then $B \oplus S$ is a nonnormal paranormal operator such that $\|T - B \oplus S\| = \|B \oplus Z - B \oplus S\| = \|S\| = \epsilon$. The last equality holds since $\|N\| = R_{sp}(N) = \epsilon/2$ and $\|\begin{bmatrix} 0 & \epsilon \\ 0 & 0 \end{bmatrix}\| = \epsilon$. Therefore, since $\epsilon > 0$ is arbitrary, T is not contained in the interior of \Re in \Re .

If $\sigma(T)$ is finite and $T \in \mathcal{N}$, then $\sigma(T) = \sigma_p(T)$ and T has an eigenvalue of infinite multiplicity. We therefore assume that $\sigma(T)$ is infinite and that zero is an accumulation point of $\sigma(T)$. Let D be the open disc about zero of radius $\epsilon/2$. Let E be the resolution of the identity for T so that $T = \int_{\sigma(T)} z \, dE_z$. Let M = (E(D))(H), $P = \sigma(T) - D$, and let $A = \int_P z \, dE_z$. Then M reduces T, dim $M = \infty$, and A is a normal operator. Let Z be the zero operator on M. Then $A \oplus Z$ is a normal operator with zero an eigenvalue of infinite multiplicity, and

$$||T - A \oplus Z|| = \left| \int_D z \, dE_z \right| \leq \epsilon/2.$$

By the first part of this proof, there exists a nonnormal paranormal operator S such that $||A \oplus Z - S|| < \epsilon/2$. Then

$$||T - S|| < ||T - A \oplus Z|| + ||A \oplus Z - S|| < \epsilon$$

Therefore, since $\epsilon > 0$ is arbitrary, T is not contained in the interior of \Re in \mathcal{I} . Hence the interior of \Re in \mathcal{I} is empty.

Define C_2 to be the set of all operators $T \in \mathcal{Q}$ with W(T) a closed line segment or a point. For $k=3,\,4,\,5,\cdots$, let C_k be the set of all operators $T \in \mathcal{Q}$ such that W(T) is the convex hull of a nondegenerate polygon with k sides. If $T \in C_k$, then each vertex of W(T) must be in the spectrum of T [1]. S. Hildebrandt [10, Theorem 2] has shown that, if $z \in \sigma_p(T) \cap \partial W(T)$, then z is a normal eigenvalue of T. Thus for $T \in C_k$, the vertices of W(T) are normal eigenvalues of T, when $\dim H < \infty$. Hence, all the operators in $C_n \cup C_{n-1}$ are normal operators when $\dim H = n < \infty$.

In [10, Theorem 9] S. Hildebrandt showed that $\mathfrak{N}=\mathcal{P}=\mathfrak{L}$ when $\dim H\leq 4$, and that $\mathfrak{N}\neq \mathfrak{L}$ for $5\leq \dim H<\infty$. The following theorem gives more information on how \mathfrak{P} and \mathfrak{L} are related when $5\leq \dim H<\infty$. Recall that $\mathfrak{N}=\mathfrak{P}$ for $\dim H<\infty$.

Theorem 2.5. If $5 \le \dim H = n < \infty$, then the interior of $\mathcal P$ in $\mathcal Q$ equals $C_n \cup C_{n-1}$.

Proof. Suppose $T \in C_n \cup C_{n-1}$. Since $C_n \cup C_{n-1} \subseteq \mathcal{H}$, T is normal. First, we show that there exists $\epsilon > 0$ such that whenever $S \in \mathcal{L}$ and $||T - S|| < \epsilon$, then

 $S \in C_n \cup C_{n-1}$. To show this, suppose the statement were false. Then there would exist $\{S_n\} \subseteq \mathcal{Q}$ such that $\|T - S_n\| \to 0$ and $S_n \in \bigcup_{i=2}^{n-2} C_i$. Then, since $W(S_n) \to W(T)$, $T \in \bigcup_{i=2}^{n-2} C_i$. Contradiction. Hence, T is an interior point of \mathcal{P} in \mathcal{Q} .

Let T be contained in the interior of $\mathcal{P}=\mathcal{N}$ in \mathcal{Q} . Suppose $T\notin C_n\cup C_{n-1}$. Let $\epsilon>0$. Since $\cos\sigma(T)=W(T),\ T\in C_k$, for some $k\leq n-2$. Since $\dim H\geq 5$ and since T is a normal operator in C_k , there exists a normal operator N such that

- 1. $||T-N|| < \epsilon/2$,
- 2. W(N) is a polygon with at least three sides, and
- 3. N has at least two eigenvalues z, w contained in the interior of W(N).

Write $N = A \oplus B$ where B can be written as $B = \begin{bmatrix} z & 0 \\ 0 & w \end{bmatrix}$. Let a > 0 and let $C = \begin{bmatrix} z & a \\ 0 & w \end{bmatrix}$; then $\|B - C\| = \|\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}\| = a$. Choose a > 0 small enough so that $W(C) \subseteq W(N)$ and so that $a < \epsilon/2$. Then since W(A) = W(N) and $\sigma(A \oplus C) = \sigma(N)$, $\cos \sigma(A \oplus C) = W(A \oplus C)$. Hence $A \oplus C \in \mathcal{L}$. Since $A \oplus C$ is not normal, and since

$$\|T-A\oplus C\|\leq \|T-N\|+\|N-A\oplus C\|\leq \epsilon/2+\epsilon/2=\epsilon,$$

T is not an interior point of $\mathcal P$ in $\mathcal Q$. Contradiction. Hence $T \in C_n \cup C_{n-1}$. It is an open question as to what the interior of $\mathcal P$ in $\mathcal Q$ is when $\dim H = \infty$. However, it can be shown that $\mathcal P \neq \mathcal Q$ when $\dim H = \infty$.

Theorem 2.6. $\mathcal{I} \neq \mathcal{L}$ when dim $H = \infty$.

Proof. Write $H = M \oplus M^{\perp}$ where dim M = 5. Let

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } N = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

where a, b, c are three complex numbers that form a triangle with W(A) contained in the interior of the triangle. Consider $A \oplus N$ as an operator on M and observe that $\cos \sigma(A \oplus N) = W(N) = W(A \oplus N)$. Since $A \oplus N$ is not normal and since $\dim M < \infty$, $A \oplus N$ is not paranormal. Hence there exists $z \in \rho(A \oplus N)$ such that

$$||R(A \oplus N, z)|| > 1/d(z, \sigma(A \oplus N)).$$

Let I be the identity operator on M^{\perp} and let $T = A \oplus N \oplus aI$. Then, $\sigma(T) = \sigma(A \oplus N)$ and $W(T) = W(A \oplus N)$. Therefore $T \in \mathcal{Q}$. Since $d(z, \sigma(T)) \leq |z - a|$,

$$||R(T, z)|| = \max\{||R(A \oplus N, z)||, |z - a|^{-1}\}\$$

= $||R(A \oplus N, z)|| > 1/d(z, \sigma(T)).$

Therefore T is not paranormal.

We now show that if $\dim H \geq 2$, then $\mathcal L$ is a nowhere dense ("thin") subset of B(H). Once this is shown, it follows immediately that $\mathcal R$ and $\mathcal P$ are also nowhere dense subsets of B(H).

Theorem 2.7. \mathcal{L} is a nowhere dense subset of B(H) when $\dim H \geq 2$.

To prove this theorem we need the following two technical lemmas.

Lemma 1. If z_1 and z_2 are distinct, normal approximate eigenvalues of $T \in B(H)$, then there exist sequences $\{x_n\}$ and $\{y_n\}$ of unit vectors in H such that

- 1. $(x_n, y_n) = 0$ for all n,
- 2. $\|(T-z_1I)x_n\| \rightarrow 0$ as $n \rightarrow \infty$, and
- 3. $\|(T-z_2I)y_n\| \rightarrow 0 \text{ as } n \rightarrow \infty$.

Lemma 2. If $T \in \mathcal{Q}$ such that there exists distinct $a, b \in \partial W(T) \cap \sigma_p(T)$, then T is not contained in the interior of \mathcal{Q} .

Proof of Theorem 2.7. Since \mathcal{L} is closed (Theorem 2.3), to show that \mathcal{L} is nowhere dense it suffices to show that \mathcal{L} has empty interior.

We first show that if T is in the interior of \mathcal{Q} , then $\sigma(T)$ must contain at least two points. Suppose $T \in \mathcal{Q}$ and $\sigma(T) = \{a\}$. Then ((T - aI)x, x) = 0 for all $x \in H$ so that T = aI. Since $\dim H \ge 2$, write $H = M \oplus M^{\perp}$ where $\dim M = 2$. Let b > 0 and define $A \in B(H)$ as

$$A = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$$
 on M , and $A = 0$ on M^{\perp} .

Then $\sigma(T+A)=\{a\}$ and, since $b\neq 0$, $\{a\}\neq W(T+A)$. Therefore $T+A\notin \mathcal{Q}$. Since $\|A\|=b>0$ is arbitrary, $T\notin$ interior \mathcal{Q} .

With the above remark completed, we can now finish the proof of Theorem 2.7. Suppose the theorem were false and there exists $T \in \text{interior } \mathfrak{L}$. Then there exists $\epsilon > 0$ such that whenever $V \in B(H)$ and $\|T - V\| < \epsilon$, then $V \in \mathfrak{L}$. From the above remark $\sigma(T)$ must contain at least two points. There must be at least two extreme points of W(T), since extreme points of W(T) for $T \in \mathfrak{L}$ are extreme points of $\sigma(T)$. Hence, after a rotation, if necessary, we may assume there exists z_1 , $z_2 \in \sigma_{\pi}(T) \cap \partial W(T)$ such that

- 1. Re $z_1 = \inf \operatorname{Re} W(T)$,
- 2. Re $z_2 = \sup \text{Re } W(T)$, and
- 3. $\operatorname{Re} z_1 < \operatorname{Re} z_2$.

Since z_1 , $z_2 \in \partial W(T) \cap \sigma_{\pi}(T)$, z_1 and z_2 are normal approximate eigenvalues of T [10, Theorem 2, p. 233]. By Lemma 1 there exist unit vectors x, $y \in H$ such that (x, y) = 0, $\|(T - z_1 I)x\| < \epsilon/8$, and $\|(T - z_2 I)y\| < \epsilon/8$. Let M be the closed subspace spanned by $\{x, y\}$. Define $C \in B(H)$ as

$$Cx = -\left(\epsilon/4\right)x,$$

$$Cy = +(\epsilon/4)y$$
, and

$$Cz = 0$$
 for all $z \in M^{\perp}$.

Since $||C|| \le \epsilon/2$, $T + C \in \mathcal{L}$. Since

$$((T+C)x, x) = (Tx, x) - \epsilon/4$$
 and

$$|(Tx, x) - z_1| \le ||(T - z_1 I)x|| < \epsilon/8,$$

we obtain inf Re $W(T+C) < \text{Re } z_1$. Since $T+C \in \mathcal{Q}$, there exists $a \in \sigma_{\pi}(T+C) \cap \partial W(T+C)$ such that Re $a=\inf \text{Re } W(T+C)$. Since C is a compact operator, Weyl's spectral inclusion theorem [7, problem 143] yields $\sigma(T+C)-\sigma_p(T+C)\subseteq \sigma(T)$. Therefore, $a \in \sigma_p(T+C)$ so that $a \in \sigma_p(T+C) \cap \partial W(T+C)$. Similarly one shows there exists

$$\dot{b} \in \sigma_{b}(T+C) \cap \partial W(T+C)$$

such that $\operatorname{Re} b = \sup W(T+C) > \operatorname{Re} z_2$, and hence $a \neq b$. By Lemma 2, there exists $S \in B(H)$ such that $\|S\| < \epsilon/2$ and $T+C+S \notin \mathcal{L}$. However, $\|T-(T+C+S)\| \leq \|C\| + \|S\| < \epsilon$ and so by assumption $T+C+S \in \mathcal{L}$. Contradiction.

Proof of Lemma 1. There exist sequences $\{w_n\}$ and $\{y_n\}$ of unit vectors in H such that $\|(T-z_1I)w_n\| \to 0$ and $\|(T-z_2I)y_n\| \to 0$ as $n \to \infty$. Then

$$|(z_1 - z_2)(w_n, y_n)| = |(z_1 w_n, y_n) - (w_n, z_2^* y_n)|$$

$$\leq \left| ((T - z_1 I) w_n, y_n) \right| + \left| (w_n, (T - z_2 I)^* y_n) \right| \leq \left\| (T - z_1 I) w_n \right\| + \left\| (T - z_2 I)^* y_n \right\|.$$

Therefore, $|(z_1 - z_2)(w_n, y_n)| \to 0$ as $n \to \infty$. Since $z_1 \neq z_2$, $(w_n, y_n) \to 0$ as $n \to \infty$.

There exist complex numbers a_n and b_n and unit vectors x_n in H such that $w_n = a_n y_n + b_n x_n$, $|a_n|^2 + |b_n|^2 = 1$, and $(x_n, y_n) = 0$. From the above paragraph we have that $a_n \to 0$, so $|b_n| \to 1$. Therefore, $\|(T - z_1 I) x_n\| \to 0$ as $n \to \infty$.

Proof of Lemma 2. Let $\epsilon > 0$. Since $a, b \in \sigma_p(T) \cap \partial W(T)$, a and b are normal eigenvalues of T [10, Theorem 2, p. 233]. Let $u, v \in H$ be unit vectors such that Tu = au and Tv = bv. Then (u, v) = 0 and the closed subspace N spanned by $\{u, v\}$ reduces T. Define $S \in B(H)$ as

$$Su = \epsilon v$$
, $Sv = 0$, $Sz = 0$ for all $z \in N^{\perp}$.

Then we may write $T+S=A\oplus B$ corresponding to $H=N\oplus N^{\perp}$. Then the matrix representation of A relative to $\{u,v\}$ is $A=\begin{bmatrix} a & \epsilon \\ 0 & b \end{bmatrix}$. Hence $\sigma(A)=\{a,b\}\subseteq \sigma(T)$. Clearly $\sigma(B)\subseteq \sigma(T)$. Therefore,

co
$$\sigma(T + S) \subseteq \text{co } \sigma(T) = W(T)$$
.

Since A is not a normal operator, W(A) is the convex hull of a nondegenerate ellipse (i.e., not a straight line) with foci at a and b (see [1]). Since $W(A) \subseteq W(T+S)$, we must have $\cos(T+S) \neq W(T+S)$. Therefore, $T+S \notin \mathcal{Q}$. Thus, since $||S|| = \epsilon > 0$ is arbitrary, $T \notin \text{interior } \mathcal{Q}$.

BIBLIOGRAPHY

- 1. William F. Donoghue, Jr., On the numerical range of a bounded operator, Michigan Math. J. 4 (1957), 261-263. MR 20 #2622.
- 2. ———, On a problem of Nieminen, Inst. Hautes Études Sci. Publ. Math. No. 16 (1963), 31-33. MR 27 #2864.
- 3. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302; II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.

- 4. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. MR 21 #3616.
- 5. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York, 1957.
- 6. ——, Numerical ranges and normal dilations, Acta. Sci. Math. 25 (1964), 1-5. MR 30 #1399.
- 7. ——, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178.
- 8. S. Hildebrandt, The closure of the numerical range of an operator as spectral set, Comm. Pure Appl. Math. 17 (1964), 415-421. MR 29 #3882.
- 9. ——, Numerischer Wertebereich und normale Dilatationen, Acta. Sci. Math. (Szeged) 26 (1965), 187-190. MR 32 #2906.
- 10. ——, Über den numerischen Wertebereich eines Operators, Math. Ann. 163 (1966), 230-247. MR 34 #613.
- 11. C. Meng, A condition that a normal operator have a closed numerical range, Proc. Amer. Math. Soc. 8 (1957), 85-88. MR 20 #1223.
- 12. ———, On the numerical range of an operator, Proc. Amer. Math. Soc. 14 (1963), 167-171. MR 26 #601.
- 13. G. H. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), 75-79. MR 28 #480.
- 14. C. R. Putnam, On the spectra of semi-normal operators, Trans. Amer. Math. Soc. 119 (1965), 509-523. MR 32 #2913.
- 15. ———, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, New York, 1967. MR 36 #707.
- 16. ——, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278-282. MR 37 #2030.
- 17. ——, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc. 133 (1968), 505-510. MR 37 #4651.
- 18. F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akad. Kiadó, Budapest, 1952; English transl., Ungar, New York, 1955. MR 14, 286; MR 17, 175.
- 19. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458. MR 26 #6772.
- 20. ———, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. MR 30 #3375.
- 21. ———, Analytic extensions and spectral localization, J. Math. Mech. 16 (1966), 287-296. MR 33 #4687.
- 22. Extreme points of the numerical range of a hyponormal operator, Michigan Math. J. 13 (1966), 87-89. MR 32 #4551.
- 23. ———, Minimal range theorems for operators with thin spectra, Pacific J. Math. 23 (1967), 601-612. MR 37 #4655.
- 24. ——, A local spectral theory for operators. II, Bull. Amer. Math. Soc. 75 (1969), 803-806. MR 39 #6108.
- 25. ____, A local spectral theory for operators, J. Functional Anal. 4 (1969), 1-10. MR 39 #4698.
- 26. A. Wintner, Zur Theorie der beschrankten Bilinearformen, Math. Z. 30 (1929), 228-282.